Symmetric dual quadratic programs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Primal-dual Interior Point Algorithm for Convex Quadratic Programs

In this paper, we propose a feasible primal-dual path-following algorithm for convex quadratic programs.At each interior-point iteration the algorithm uses a full-Newton step and a suitable proximity measure for tracing approximately the central path.We show that the short-step algorithm has the best known iteration bound,namely O( √ n log (n+1) ).

متن کامل

A dual method for solving general convex quadratic programs

In this paper, we present a new method for solving quadratic programming problems, not strictly convex. Constraints of the problem are linear equalities and inequalities, with bounded variables. The suggested method combines the active-set strategies and support methods. The algorithm of the method and numerical experiments are presented, while comparing our approach with the active set method ...

متن کامل

Quadratic Programs with Hollows

Let F be a quadratically constrained, possibly nonconvex, bounded set, and let E1, . . . , El denote ellipsoids contained in F with non-intersecting interiors. We prove that minimizing an arbitrary quadratic q(·) over G := F\∪k=1 int(Ek) is no more difficult than minimizing q(·) over F in the following sense: if a given semidefinite-programming (SDP) relaxation for min{q(x) : x ∈ F} is tight, t...

متن کامل

Dual gauge programs, with applications to quadratic programming and the minimum-norm problem

A gauge function f(.) is a nonnegative convex function that is positively homogeneous and satisfies f(O)=O. Norms and pseudonorms are specific instances of a gauge function. This paper presents a gauge duality theory for a gauge program, which is the problem of minimizing the value of a gauge function f(.) over a convex set. The gauge dual program is also a gauge program, unlike the standard La...

متن کامل

A numerically stable dual method for solving strictly convex quadratic programs

An efficient and numerically stable dual algorithm for positive definite quadratic programming is described which takes advantage of the fact lhat the unconstrained minimum of the objective function can be used as a starling point. Its implementation utilizes the Cholesky and QR factorizations and procedures for updating them. The performance of the dual algorithm is compared against that of pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quarterly of Applied Mathematics

سال: 1963

ISSN: 0033-569X,1552-4485

DOI: 10.1090/qam/156707